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I. INTRODUCTION

This paper considers the problem of reducing the sensitivity of a

linear single-input single-output system over a finite frequency interval by

feedback.

C 

*Fig. 1

The feedback system is described by Fig. 1. P is a given system and we

assume PcH. (i.e., stable) and C is a feedback. We say that the feedback

stabilizes the system if the transfer functions from (vlv 2 ) to (ul,u2 ) all

belong to HO.

The closed loop sensitivity S is the transfer function from v. to u2

and is given by

.- i

S(s) = (1+P(s)C(s)) (1.1)

The problem of sensitivity reduction over a frequency band X is stated

. as follows. Let x be the characteristic function of a given bounded set

XC(-, ), on the imaginary axis, i.e.,

"%%
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1 if wax,

x(JW) = (1.2)
(0 otherwise

For given >0 and M>1, find a stabilizing feedback for which the

sensitivity satisfies

(xslL < a, 11S. < M. (1.3)

Here are our main results.

Theorem 1.

Suppose PeH= has a nontrivial inner part and x is the characteristic

function of a subset of the imaginary axis which has positive measure. Then

inf JjxSJj. > 0,

11Sf1<M

where M>1 and the infimum is taken over all stabilizing compensators.

Theorem 2.

Suppose PeHc is continuous and has at most countably many zeros on the

imaginary axis. Let x be the characterization function of a compact setW.
X C(--,-) on the imaginary axis. Then for any 1>e>O and any M>1 there exist

a stabilizing compensator such that

F Accesion For

IlxSlH. < . I 11. < M, NTIS CA&I 9
.TIC TAB L

n n r io ,c .'

il' and only if P is outer and has no zeros on jX.
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i4
Previous discussions of this problem appear in [11 - [5]. In [1], it

was shown that if the plant P is analytic, is bounded, has no zero in Re

sO, and satisfies an attenuation condition at s=-, then for any >O and M>1

the problem has a solution. Especially the problem is solvable when P is of

minimum phase. Theorem 2 generalizes this result, and seems to illuminate

more on the structural aspects of the sensitivity reduction problem. In

[3], in the framework of rational plants, it was shown that if the plant P

has a right half plane zero then there exists a positive number k such that

k
IjxSjJ. IIS JjJ

Hence given M>1, there is >O such that the problem has no solution.

Theorem 1 is a natural extension of this statement. In [5), it was shown

that if the plant is analytic and has no zero in some region containing Re

*-" sO, and satisfies some intricate condition near s=-, then for any >O and

.-.-. M>2+L (L is determined by the condition) the problem has a solution.

However the condition seems rather difficult to check. The difficulty was

demonstrated by the authors' wrong conclusion that for P(s) = e-S/(s+l)

(which has a nontrivial inner part), and some M>2, the problem has a

solution for any >0.

,%'
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II. PRELIMINARIES AND NOTATIONS

2.1 Parametrization of Stabilizing Feedbacks

We parametrize feedbacks achieving stability. The parametrization was

introduced in (6] and modified in [7]. The following is a corollary of [8]

for a stable system.

Proposition 3:

Assume P is stable (PeH*). Then a feedback C stabilizes the system if

and only if there exists heHw, Ph#1 such that

C h (2.1)
1-Ph

Substituting (2.1) to (1.1), we have

S = 1-Ph. (2.2)

Therefore our problem is reduced to that of finding hCH' satisfying

1jx(1-Ph)fJ. < c, j11-Phll. < M (2.3)

for given >0, M>1.

2.2 HP Functions

H2 and H are the Handy spaces of analytic functions on the right half

',



plane with L2 and LD boundary values, respectively. [9], [10] are good

sources on HP spaces, inner-outer factorizations, etc. The following is

from [101 and is worthy of note.

Proposition 4 [10].

Assume PeH* and let K = H2 EPH2 (or K = (PH2)j). Then K = (0) if and

only if P is outer.

2.3 a-Inner Product and a-Norm

The Laplace transformation L defines an isometric isomrophism from

L2 [O_) to H2 . We shall use both the time domain and the frequency domain

in our analysis.

We denote the usual inner product and norm of H2  (respectively,

L2[0,_)) by <','> and I[[. For future use we introduce also a whole

family of additional inner products and norms as follows. Given >0, and f,

geH2 , define the a-inner product and the a-norm by

VM

<fg> a = (270) 1f f(a+jw)g(a+jw)dw (2.4)

1/2(25I lfl l =  <f,f>l (2.5)

a...a

4 -.
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Since L is an isometry, there hold

<f,g> = L-l(f)(t)L-l(g)(t)e-20tdt (2.6)

Ilflia = ( jIL-1(f)(t) I e - atdt)1 /2  (2.7)

If L-l(f) and L-1 (g) are supported within the compact interval [O,T],

given some T>0, then

e-aT J1fJM - If1I, - Jif[l (2.8)

and

I<fg>- (fg>cl- (1-e-aT)(jlfIl + 1lgj)2  (2.9)

For xeL 2 [0,), define XT c L2 [O,_) to be the truncation of x at time T, T>O,

i.e.

x(t) t<T

0 otherwise

For f=L(x), we denote fT = L(xT)" Notice that XT - x and 2T -4f as T -

in the usual topology of L2 [0,- ) and H2 .

.4Ad



III. PROOFS OF THEOREMS 1 AND 2.

In proving Theorem 1 we use the following observations.

Lemma 5.

Let (gn)C H' be a sequence such that 1Ign11w < M. Let x be the

characteristic function of a set X C [--, -] of positive measure on the

imaginary axis. Suppose I Xgnjt -0 as n --. Then for any compact set Y

in the open right half plane, Ign(s)l -40, uniformly for seY.

Proof: It seems convenient to establish the lemma in the disc. For geHm,

define

1l+z)
(  = g( -+ (3.1)

Then gDeH=(D) and 11gJ11 = 11gDII, where D is the unit disc on the complex

plane. Let YD = {zl(l+z)/(l-z)eY), and XD = {zI(l+z)/(l-z)ejX) be the

inverse image of Y and X by the Mobius transformation respectively, and xD

be the characteristic function of XD. Since Y is a compact set in the open

right half plane, YD C B(O,r) (- the closed disc of radius r) for some

O<r<l. By Jensen's inequality, we have

log Ig~(z < logIg (ei% IRe[ e+zde-- 'D-'- ei-i- =-0 de ( 3.2 )e.'IT- e -z

Note that for zeYD and e c [-nn]

-I
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1+r > 1Z e Re[ z > i- zI > 1-r

-- - - >Z -R e- '- I - - +--- (3.3)

I-r - e D-z 1

Using the inequalities (3.3), for zeYD we can find a uniform upper

bound for the right hand side of (3.2).

*~ ' . logIgD (z)

< l _~ 1+(ei" I
1 lg++rgD ( e i d 1-r log+ gD(e i )  -idO]

--p.-.,, ]3_<- 12 [+rl~ IgD ( e i S ) ]dO - 1- log+Ig e e ) l-'de]

< + 1 -r lo+(01~2)p (XD) (3.4)
- ---- I IgDIIl 271 -1+r g+ Ix g l

where

log X = logfmax(l,x)} _ 0, (3.5)

and p is the Lebesgue measure on the unit circle.

Let fgnD }  be the sequence in H (D) obtained from (gn) by the

transformation (3.1). Note that

IIgnDjl. < M, and IIjxgnDII -40, as n -(3. (3.6)

4, ~ Applying (3.4) to the sequence {gnD), we see that the right hand side of

Oil



10

(3.4) tends to - uniformly for zeYD. Hence Ign(s)I -40 uniformly for seY.

Q.E.D.

Corollary 6. Let (gn) be as in Lemma 5, feH
2 and a>0. Then ,llgnflj - as

n -4

Proof. Fix >0. Since feH 2, there exists 0l>0 such that

(2n) - I f f(a+j) 2d < (3.7)
W I xi) 2M

This implies that

(27T) : " Ignf(a+j ) 2dw < (3.8)

for all n, since ligni lk < M.

Applying Lemma 5 to the sequence {gn) c HW and Y = sls=a+jw, IwI _<),

and Lebesgue's dominant convergence theorem, we see that

(2f-i dgn f(a+jw)2d -40 as n -4 (3.9)

Thus for n large enough,

0cc
IgnfII2 = (2r)-1  Ig1f(a+jo)I 2 < e (3.10)

.. j
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This implies that IIgnfI~a -*>0 as n Q..D

Claim 7. Let (gn)CH , IIgnIIw < M and f c H. Then for each X>0, there

exist some T>O and cT>0 such that I~flgnf> -<fT,gflf>j, < X for all n.

Proof

*I<fi n f> - <f To gnf>I

=I<f-fTP gn f>1

*l- T1 IJ' IIgIkfII

* * Utilizing (2.9), we also have

I<f TPg n f> - <f TP g nf> al

= ~ '<TP (g nf) T > <f TP (gnfl) T>U

< (~~eaT)I~T11 + [II(gnf)TII

2aT fj2

(4)2 (1-e-2arT )Hjf (3.12)
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Recall that fT -f as T -- =. Choose T sufficiently large so that IIf-fTII <

%/2MJIIfI. Then choose c sufficiently small so that (l-e- 2 aT) <

k/2(1+M) 2 11fl1 2 . Combining (3.11) and (3.12), we have the

desired inequality. Q.E.D.

For ease of reference, we repeat our results again.

Theorem 1.

Suppose PcH = has a nontrivial inner part and x is the characteristic

function of a subset of the imagainary axis which has positive measure.

Then

inf IIxSIl= > 0, (3.13)• Iu Il~M

where M>I and the infimum is taken over all stabilizing compensators.

Proof of Theorem 1.

On the contrary, assume that there exists a sequence [Sn) of

sensitivity functions, Sn = i-Phn, hn&HW with IISnIl(<M, IIxSnII- - 0 as

n-=.

Set K = H ePH2 . The subspace K is nontrvial (K#{]0), by Proposition 4,

since P has a nontrivial inner part. For any fcK and any gsH 2, we have

.1

04
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<f,S ng> = <f,(1-Ph n)g> (3.14)

= <f,g> - <f,Ph ng>

- (f,g>s

in particular, for feK, f#0,

(fSnf> = Ilfl1 2 > 0. (3.15)

Hence in view of Claim 7, there exist T>O, a>0, and 6>0 such that

<f S f> > 6 (3.16)
T' n a

-for all n.

On the other hand, by corollary 6

<f T Snf> J - IJfTIIIISnflIJ -0 as n -- (3.17)

which is a contradiction. Q.E.D.

*Theorem 2.

Suppose PeHW is continuous and has at most countably many zeros on the

imaginary axis. Let x be the characterization function of a compact set jX;

Xc (-=,=) on the imaginary axis. Then for any 1>>0 and any M>1 there

exists a stabilizing compensator such that

04kA,"A t
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I lxsIL . , IlSII. < M (3.18)

if and only if P is outer and has no zeros on JX.

Proof: (Necessity) If P is not outer, then the conclusion follows from

Theorem 1. Let P have a zero on X. Suppose then that there exists hcHm

such that

lHx(1-Ph)Ljo < ll1-Phll ( (3.19)

Fix >0. Because P is continuous on the imaginary axis,

P [XC1Wl IP(i) < 61 IhI l-l}] > 0, i.e., g[X {fwl IP(jw)h(jw)l < 6)] > 0

where W is the Lebesgue measure on the imaginary axis. Since 8 was

arbitrary IIx(1-Ph) [. 1, a contradiction.

(Sufficiency). The proof is by construction of heHw such that

IIx(1-Ph)l < e, I11-Phll < M (3.20)

for given 0<e<l, M>1.

o0.

-2-'
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Let

U =(u:u=- or P(ju) =0). (3.21)

From the assumption U is at most countable and UnTX 0 . Let U = (u nP

n=1,2,....) be an enumeration of U.

Define mna by

a(s -j n -(n+ l) u( . 2

~-ju ) +12 (322

r a(S) ~ i
n,a

N -(n+1)

where a>0 is a parameter to be fixed later, and the branch of the

2-(+'thcomplex root is decided in such a way that the positive real line

is mapped by rna into itself. Eq. (3.22) defines a analytic function on

the open right half plane, since the function a(s-jun)/[a(s-u)l (o

aI(s+a)) maps the open right half plane into itself. Furthermore, the

following properties of rn,a are easily proved: (i) rn,a e HO, I lrn,a I I==

1; (ii) rn,a is outer; (iii) rn,a is continuous on the imaginary axis

inldn*v n (un = 0, (v x( n, a) 1-= -4 0 as a -4 - (note that

X'~ =0); and (vi) -("'r2),) ~ for any s e (Res 2 0 Ouf-w.

Given 0>0 (from (3.17)), we choose T1>0 such that ~Iog zi < n, zc,
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implies

lz-lI < C (3.23)

We choose the parameter a, according to the property (v), in such a way

that

lix log r < (3.24)n,all  < 2n

is satisfied. For brevity we denote rn instead of n,a henceforth.

The properties (iii) and (iv) imply that there exists a neighborhood Wn

-' Of un in the one point compactification of R such that Wn r- X = 0 and

Irn(Jw)i < M-1, weW n  (Note that a neighborhood of - is [wn uwn>Q) for some
0>0.) U is compact since it is a closed subset of a compact set, and henceFw
the cover U: U=W has a finite subcover, say UCW = UncNWn , where N is a

finite index set.

Since P and r n are outer

I'
V.

% %
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P(S) X ex+j1. log Ip~ji w-* d21w (3.25)

* and

(S) e I logir Q(Wz) (3.26)wn n' (s)T n m~iW'js 1+2](.6

for ' .X n C, Px I f=j'nI.

* Given 6)0, let

D6 6w Pjoj. ) (3.27)

and, define h6 (s) by

IlJ Ws+j d
(S) -x n-N rw) e2 (3.28)

where

C (W (3.29)
6 C(W) e

V,6



C(M) = log IP(jw) - log Irn(Jw)l (3.30)

neN

The proof will be completed if we show that h6eH- ar. that for

sufficiently small 6>0 this function satisfies (3.19). Indeed, C6 is

uniformly bounded since log IP(jw) I and log IrnI are bounded in cD6  (the

complement of DO. Hence h6 e H'
.

In verifying (3.19) we use the following equalities.

_( = ln exp [f I CO;rn(jw) 1ws+ dw,w _5 l+w2

.-.. +E 1 C(W

1 =S C(w) ws+j dw
r, J w+js w21

H rJ r(s) ex[ D C(w)+js 1+.2d (3.31)

neN 6 1+

Sand

H i Tlr(j(0) I WCD 6

6 (JW)I (3.32)

jIP(jW)I O

which follow from (3.25), (3.29) and (3.30).

Note now ',at if weW ther. rr(jw)l < M-1 for some i-ndex rtN, ant
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Irn(JW) 1, for all neN. So for 6<M-1 there holds

<M-1 WeWI.I IPh 6(Jw)I =1 (3.33)

Consequently, for weW

Ji-Ph 6 ()J ! i + m-_ =m (3.34)
I-,

7or nandling w in the complement of W, we first observe that

r I Jarg r.(jw) < -(n+2) i! (3.35)
e1" r. N n=1

from tne ;roperty (vi) of rr. Thus from Claim 8 below, for sufficiently

small 6,

. " (,.)1 (3.36)

-enoe (from (3.33), (3.36)) for wrcW,

-. 5 j-P (iW)l (3.37)

'7 q . ( 3 . 3 4 ) a n -' ( 3 . 3 7 ) --- ; : ' y I I I- P .6 l l = M .

Fnrally we cor 7:ter WX:" then.

* *
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jlog r (jW)j S Ilog r n(iw)I
neN ncN

ncN

V.av

'C 2 (3.38)

ey (32) 'mCam 8 belecow I ut y flw thaest for sfi nl small 6 we

i 2inee smaa ro
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IPh ( )I =l irn(J,.w)I for w e (3.40)
neN

Hence it remains to check that

arg Ph 6jw) -)arg 7 Jr (jW) as , -0 (3.41)

in L-(CW).

From (3.30), it suffices to show that

C(w) + d as -- 0 (3.42)
f28 t- 1+W

uniformly for e in OW.

Since 6  ies strictly within the interior of W, the kernel

(w0-1,)/(-e) is uniformly bounded over the domain ocD 6 and eecw. Setting

dp(w) = dw/(2+1), we know that log IP(')I and C(') belong to L (dp). By

the first fact it is necessary that p(D6 ) -0 as 6 --0. Consequently, the

second implies (3.4.). This proves the claim. Q.E.D.

Remark. (i) Notice that we did not require continuity of F(jw) at

W . In fact, the assumptions on the continuity of P(jw) and the

compactness of the subset X, can be relaxed in various ways without

requir:.ng considerable changes in the analysis. The current setup was

00
7 cncsen fcr simplicity.

.i:) A major part of the proof cf Theorem 2 is dedicated to the

:or.nru'tln of the *ro-1-off" functions r., which are needed when 2 M

'

0

0/

I., /,iWl.i, ,I + p41,p1Nx,! , + #- l l lp , Fi +.++f , _ .+ + , +, '"
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1. For M>2, the assumptions can be further relaxed; e.g., if P(jw) is

continuous, to the requirement that P be outer and have no zeros in X.

.

.p . . ... ...

%.-.%P,)

0*1;

'p~b°
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